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THE USE OF FIRST INTEGRALS IN PROBLEMS 
OF SYNTHES IZING OPTIMAL CONTROL SYSTEMS* 

V.E. BEEBYUK 

The problem of synthesizing optimal control of the motion of a non-linear 
unsteady system is considered. The control quality is evaluated by a 
functional of mixed type (a Bolts functional) /l/. A method of synthesis- 
ing optimal control systems is worked out for systems of variational 
problems with a fixed time and a free right end, based on the use of 
first integrals of the equations of a free uncontrolled object. The 
effectiveness of the proposed method is illustrated by examples. The 
synthesis problem, i.e. of representing the optimal control as a function 
of the system coordinates, has been considered in many publications, for 
instance in /l-9/etc. 

1. Consider a controllable object whose motion is defined by the equations 

x' = f (5, t) + b (2, t) u (2, t) (1.1) 
where z=(zr,..., x,,) is an n-dimensional vector of the phase coordinates, a dot denotes dif- 
ferentiationwithrespect to t; u= (uI, . . . . u,) is an r-dimensional vector of the controlling 
functions, f = (fl, . . ., f,,), b = (b,,) (i = I, . . ., n; j = 1, . . ., r) are an n-dimensional vector function, 
and an n X T functional matrix respectively specified on some open set a of Euclidean space 
E tl+1, in which the coordinates of a point are the numbers xl,...,x,,,t. Henceforth we assume 
that f, b,u are such that function f,, = f(x, t)-l- b(x, t)u(x, t) and its partial derivatives 
af*lax, (i = 1, 2, . . ., n) exist and are continuous in the open set 9. 

We call the arbitrary function u&t) that satisfies the conditions on f, (xv t) with 
values in the Euclidean space E, the admissible control. 

Suppose we are given t,,t,, the instants of the beginning and end of the control process 
and let the initial state of the object be 

5 (Q = % (1.2) 
We denote by v1 (2, t), . . ., vk (x, t), k < n the independent first integrals /lo/ of the equations 

of motion of the free (uncontrolled) object, i.e. of the system of equations 

2' = f (x, t) (1.3) 

Let W (yl, . . ., yk) be a given arbitrary differentiable function. We select as the arguments 
y,,, the first integrals v,(x,t), and consip; the functional 

0 = W (V [X (tr), h]} f + 1 z (kj 2 aw ‘i_fr’ ‘)I bij (Z, t)r dt + (1.4) 
1, j=l i=1 

+,g [ TLp]‘& 

I = 
where v (x, t) = {vl (x, t), . . ., ~+(x,t)} is the vector of first integrals and &,...,k, are specified 
coefficients. 

The first term of the functional (1.4) (the terminal part) is a function of the phase 
coordinates at the end of the control process and of finite instant of time t,, the second 
defines the properties of the object itself as well as its control system. The third term of 
the functional 0 can be interpreted as the costs of controlling the motion of the object /9/. 

The physical meaning of the first two terms of the quality criterion (1.4) can be revealed 
by the specific selection of the function W and the first integrals v,,,(+,t). For example, when 
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the free object is a conservative mechanical system, and for function W[v(z,t)l the energy 
integral is selected, the first term of functional (1.4) defines the total mechanical energy 
of the object at the end of the control process , and the second defines the rate of dissipation 
of mechanical energy in the controlled motion of the system considered. 

Problem 1. To determine the admissible control u,(x,t) that transfers the object in a 
given time t, - t, by virtue of (1.1) from the initial state (1.2) to some final state 

x tt2) = xb 
and gives the minimum value to functional (1.4). 

In the statement the final state (1.5) is not specified a priori and is determined when 
solving the problem, i.e. a variational problem is considered with a fixed control time and a 
free right end. 

Problem 1 is solved by the following theorem. 

Theorem 1. Let the motion of the object be defined by (1.1) and the initial state by 
(1.2), and an arbitrary differentiable function W(y,, . . ..gk). k< n be given. Then the control 
actions 

n 
uej = - kja .z aw [Ul (z, 0, . . . , Ok (5, :)I 

asi bij (5, t), j = I, . . . , r 
f=l 

(1.6) 

where v,(z, t) (m = 1, . . . . k) are the independent first integrals of the equations of motion of 
the free object (1.3) provide the absolute minimum to the functional (1.4) which is eoual to 
w {VI [x (tl), tj, . . ., vk [x (t,), t,]}. 

To prove Theorem 1 we transform functional (1.4) to the form 

Let us calculate the total derivative of the functional W[v(x, t)] with respect to time. 
By virtue of the equations of motion (l.l), we obtain 

(1.8) 

Functions v,(x, t) are the first integrals of system (1.3); hence .they satisfy the relations 

m=l,...,k 

Taking into account (1.9), from (1.8) we obtain 

We integrate (1.10) with respect to time from t, to t,. and obtain 

Using (1.7) and (1.11) we obtain for functional (1.4) the formula 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

Note that w {v [x (tl), t,]) is independent of the choice of control u (2, t) I since x(tl) and 

t1 are given a priori, and v(x,t) is the vector of the first integrals of the equation of 
motion of the free object. Taking the above into account, from an analysis of (1.12) it follows 
that the functional @ reaches an absolute minimum with controls (1.6), and m&@,(u)= @(u*) = 

w 10 12 (tl), t1u. Theorem 1 is proved and by the same token problem 1 is sovled. 

2. Consider an object whose motion is defined by (1.1) with initial conditions (1.2). 
Let the Boltz functional be specified in the form 

@ = F [x(ts), ta] + -g’s [Q (5, t) + 2 [-qy] CEt 
I, j=l 



where F is a given non-negative function of the phase coordinates at the final instant of time, 
itgt;given non-negative functionof thephase coordinates andthetime,t,, t,, and k, aregiven con- 

Pioblem 2. To determine the admissible control u+(s,t) that transfers the object in a 
given time t, - t, by virtue of (1.1) from the initial state (1.2) to some final state (1.5) 
and makes the functional (2.1) a minimum. 

It is shown in /4, 6/ that a synthesis of the optimal control in problem 2 can be obtained 
by the Letova-Kalman method, which reduces to solving a non-linear partial differential equation 
with the boundary condition 

(2.2) 

(2.3) 

The integration of (2.2) presents considerable difficulties. For non-linear objects only 
one general method for its approximate solution is known. It relates to the case of analytic 
functions fi, bi, and is the method of power series. These difficulties in solving (2.2) 
stimulated a search for another version of the method of synthesis - analytic construction using 
the generalized the general work /6/. 

(2.4) 

where (P(U) is defined by formula (2.1) and V(z,t) is the solution of the linear partial 
differential equation 

av n 
TF+ r, %f&, t)=-&w t) (2.5) 

I=1 

with boundary condition (2.3). A noted in /6/, passing to the criterion of generalized work 
fundamentally eases solving the problem of obtaining optimal controls (owing to the linearity 
of the partial differential equation in the function V(z,t)). The possibilities and results 
of applying analytic construction using the criterion of generalized work (2.4) have been 
considered in detail in /6/ etc. 

It should be noted that formulae (l.l), (1.2), (1.5), (2.1), (2.2), and (l.l), (1.2), 
(1.5), (2.4), (2.5) generally determine various problems of synthesizing optimal control, 
since the different functional8 are determined, including the last term of functional (2.4), 
only after solving (2.5), i.e. synthesis using the criterion of the generalized work is semi- 
definite in advance. 

Based on the results of Sect.1, a method is proposed below for solving problem 2 using 
simpler relations, as compared with (2.2) and (2.3) for the synthesizing function. 

Theorem 2. Let the motion of the object be defined by (1.1) and initial conditions (1.2) 
and let there exist the differentiable function W(y,, . . . . gk) which satisfies the relations 

(2.6) 

w (0 15 (Q, &I) = F Ix (Q, &I (2.7) 

where v (I, t) = {vI (5, t), . . ., vk(z,t)} is the vector of independent first integrals of the equations 
of motion of the free object (1.3). Then the equation of the form (1.6) is the solution of 
problem 2, i.e. it defines the optimal design in the Boltz problem with fixed time and a free 
right end. 

To prove Theorem 2 it is sufficient to express functional (2.1), taking into account 
(2.6) and (2.7), and to show directly, that the expression obtained is the same as functional 
(l-4), i.e. that all th e conditions of Theorem 1 are satisfied with the consequent validity 
of Theorem 2. 

Thus to determine the optimal control in problem 2 it is necessary to solve for function 
W the functionally differential Eq.(2.6) with condition (2.7). 

Consider a scalar control action, i.e. we set r = 1. We assume that the functions Q(5, t), 
bi, (5, t) admit ofthe representations 

bil (xv t) = ‘Pm [VI (2, t), . . ., vk (2, t)] 

1/Q (5, t) = 6 bl (.z. t), . . ., vk (5, t)], m = i, . . ., k 

where (P,,,, 8 are some known functions. Then for the design function w(V,, . . . . vk) from (2.6) 
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we have the first-order partial differential equation 

k 

r: aw h . . .I Dk) 

a”, 
%&(Vl,~~ ., Vk)=e(Vl,~~.,vk) 

m=1 

Its general solution in implicit form is 

\Y 12, (v,, . . ., vk, w), . . ., .&$ (v,, . . ., vk, w)] = 0 (2.9) 
where Y is an arbitrary differentiable function and ,z~, . . . . fj are independent first integrals 
of the system of ordinary differential equations 

do1 -=. . 
‘PI 

_du,=zK 
'pk e 

Formula (2.9) enables us to determine the required function W. 
In the case of a single first integral of the free-object equations of motion, i.e. k = 1, 

for the synthesizing function w[~,(z,t)] by virtue of (2.6)-(2.8), we have 

Note that for the existence of the differentiable function W(y,, . . . . yk). satisfying relations 
(2.6) and (2.7), in the variational problem (l.l), (1.2), (1.5), and (2.1) the phase constraint 

must necessarily be satisfied. 
The above investigations enable the following algorithm of optimal control synthesis in 

the Boltz problem of the form (l.l), (1.2), (1.5), and (2.1) to be compiled. 
lo. Determine the first independent integrals of the free-object equations of motion (1.3) 

(at least one of the integrals). 
2O. Solve the auxiliary boundary value problem (2.6), (2.7) and determine the synthesizing 

function of the first integrals. 
3O. Using formula (1.2) calculate the optimal control, and from (l.l), (1.2) determine 

the corresponding optimal law of motion of the object. 
40. Calculate the absolute minimum of functional (2.1) using the formula 

Q, m,o = @ (u*) = w {v 15 (U hl) 
3. We shall give sczne examples of the application of the above problem of synthesizing 

the optimal control of the motion of mechanical systems. 

Example 1. Let the motion of the object be defined by the equations 

II' = fi 63, %, t, 4, %’ = 4 2 (h) = 20 (3.1) 

and the control quality by the functional 

@ = F [~a (:a), hl + -& s [Q (4 + .* (~3 91 dt (3.2) 
t, 

where P,Q are given non-negative functions of their arguments, s(t,t) is a scalar controlling 
action, and t,, t, are fixed instants of the beginning and end of the control process. It is 
required to determine the admissible control that transfers the object by virtue of (3.1) in a 
given time t,-tt, from the initial state to some final state (1.5) and makes functional (3.2) 
a minimum. 

we solve the problem formulated in accordance with the algorithm proposed in Sect.2. 
lo. The independent first integral of the free-body equations of motion 21' = fr (Zi, % 6 0). 

z’,= o has the form VG+ 
Z". Theauxiliaryboundaryvalue problem (-. q 6), (2.7) reduces inthis problemtodeterminingthe 

function W(Z,) that satisfies the equations 

dW/dz, = f/o, w b, @a)] = F h @e)v &I (3.3) 

From the solution of (3.3) we have 

W (~8) = 0. @I) + F kn (tn), trill - Q. I% (fs)l, Q+ @I) = 5 f/Q h) dzx 

3O. On the basis of Theorem 2 we conclude that the absolute minimum of functional (3.2) 

is provided by the control u,(z,t)=--dW/dz,= -r/Q@%). The corresponding optimum law of motion 
of the object is determined by the Cauchy problem 
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+I’ = fi I% =a, 4 - vma, 2,’ = - r/Q(1,). 2 (fl) = % 
The minimum of functional (3.2) is 

W [I, (tl)l = Q. Iz, (:l)l + F 12, (tr), J - 0. 1% (Ml 

Example 2. Consider the motion of a material point of mass m along the OZ, axis under 
the action of a force of potential II(Z~) and the controlling action u(z,,z,,% The equations 
of motion have the form 

(3.4) 

It is required to determine the control ~(2,:) that transfers the point by virtue of 
(3.4) in time t,--, from the initial state (1.2) to some final state (1.5), and provides the 
minimum of the functional 

(3.5) 

The terminal part of the functional @ represents the value of the total mechanical energy 
of the system at the end of the control process when t=t,, the third term in (3.5) defines 
the dissipation of mechanical energy during the controlled motion, and the fourth the energy 
expended on the control. 

This problem may be solved using Theorem 1. Indeed the free-body equations of motion 
(3.4) for ur0 have an independent first integral, i.e. the energy integral v=V,mzC+ II( 

If this integral is taken for the design function W(v), and one takes into account that in 
this problem b, =O. b,= i/m, n= 2, r= h = i, functional (3.5) takes the form (1.4). By Theorem 1 
the solution of the problem is 

Il* (2, 1) = - c $- bi = - q (t) 
=1 ’ (3.6) 

The functional (3.5) on the control u.(z,~) reaches an absolute minimum equal to l/pmz,P(tl)+ 

D (21 WI , i.e. the value of total mechanical energy at the instant the control process begins. 
The corresponding optimal law of motion of the point is determined from the following Cauchy 
problem: 

21' = I*, m.$' = --dn (z,)k, - Z*, I (tJ = z0 (3.7) 

For comparison let us solve this problem by the methodsofthe classical calculus of 
variations, By the Lagrange principle /ll/ it is necessary to follow the following procedure. 

lo. Form the Lagrangian L and terminator 2. In this problem they have the form 

L =~(.*:+s:)+pl(=~.-I.)+n(~~+~~-$) 

1 = + (mz~*(t,)+ 2ll k(h)]) + L~I VI) + h PI) 

where (&,&,?.,,P~,P, are undetermined Lagrange multipliers. 
2O. Write down the necessary conditions of optimality of the process (+.I+:,,~,): 
a) steadiness with respect to z for the Lagrangian L (the Euler equation) 

Pa an 
Pi--,dz;i=O, P~'-~)LEY+~~=~ 

b) transversality with respect to z for the terminator 1: 

(3.8) 

(3.9) Pl (h) = Al, Pl M = - ho 
dD k @a)1 

dz1 w 

PC VI) = a,. ps VJ = --k mza VJ 

c) steadiness with respect to u of the Lagrangian L 

Lu- pJm=O (3.10) 

3O. Determine the admissible controllable processes for which the conditions (3.8)-(3.10) 
with Lagrangian multipliers 5 and pj simultaneously equal zero. Among all the extremal 
processes obtained find the solution of the problem or prove that there is no solution. 

Let us carry out Step 3O. First, let us consider the case when h,=O. As follows from 
(3.8)-(3.10). it is necessary that h,=h,~p,=p,=O, i.e. all the Lagrange multipliers are 
zeros, which means that for &,=o there are no admissible extremals. Assuming &= 1 from 
(3.10) we obtain 

U = p&n (3.11) 

Taking (3.11) into account, from (3.4) and (3.0) for determining zi(t),pi(t) we have 

dn 
2,’ = I,, p;++d, p*‘-z*+p,=O (3.12) 
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We select the functions pi in the form 

p1 = --arIldz,, pa= -mx* (3.13) 

Then, as follows from (3.11)-(3.13), IA,=--r,(t), and the extremals z.(t) must be, as 
before, solutions ofthe Cauchy problem (3.7). The satisfaction of the transversalityconditions 
(3.9) is guaranteed, if we assume & = -dII[q (tJ/d.q(Q, A,= -_nrzr(tI). For the completion of the 
solution of this problem by the methods of the classical calculus of variations it is further 
necessary to prove that the control s.= --2, obtained provides the minimum of the functional 
(3.5). This had been proved using Theorem 1. 

The examples considered here show the effectiveness of the proposed design of optimal 
control of the motion of mechanical systems based on the use of the first integrals. 
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OPTIMAL CONTROL OF STEPWISE PROCESSES WITH PERIODIC CHARACTERISTICS* 

A.B. PIUNOVSKII 

The problem of optimal control of a stepwise Markov process with periodic 
characteristics that is not discontinuous with respect to probability is 
solved. The sufficiency of periodic Markov control strategies is proved, 
the optimality equation is obtained, and examples of the solution of 
practical problems are given. 

The construction of optimal strategies for the control of stochastic processes is a 
pressing practical problem. /l-10/. Besides stochastically continuous /l, 2, 5, 7-9/ and 
purely discontinuous /3, 4, 6/ models of controllable processes, problems in which the 
controllable stochastic process has a mixed character are of interest. In /l-10/ models with 
diffusion and intermittent components, and also with other interacting Markov processes were 
studied. One of the varieties of such combined models, including a chain with discrete time 
and a stochastically continuous intermittent process are considered in this paper. Problems 
of the optimal control of such system were investigated in /lo/ in a finite time interval. 
Here the problem of synthesis in an infinite time interval is considered on the assumption 
that all the characteristics of the controlled model are periodic time functions. 

1. Notation and definitions. A two-component Markov intermittent stochastic process 

(Ei* $)1) is considered here in an infinite time interval Z = IO,=). The component Et represents 
a stochastically continuous process, the jumps of the component Cp, appear at known instants 
T, 22, . . . . We denote by X the space of component &, and Y is the space of component states qPt 
that are finite or denumerable sets. The term state of the process (&,(Pt) at the instant 
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